首页> 外文OA文献 >A phase-field/gradient damage model for brittle fracture in elastic-plastic solids
【2h】

A phase-field/gradient damage model for brittle fracture in elastic-plastic solids

机译:弹塑性固体脆性断裂的相场/梯度损伤模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The formulation of a phase-field continuum theory for brittle fracture in elastic-plastic solids and its computational implementation are presented in this contribution. The theory is based on a virtual-power formulation in which two additional and independent kinematical descriptors are introduced, namely the phase-field and the accumulated plastic strain. Further, it incorporates irreversibility of both phase-field and plastic strain evolutions by introducing suitable constraints and by carefully heeding the influence of those constraints on the kinetics underlying microstructural changes associated with plasticity and fracture. The numerical implementation employs the finite-element method for spatial discretization and a splitting scheme with sub-stepping for the time integration. To illustrate its potential utility,\udwe apply the model to a number of well known linear, as well as non-linear, fracture mechanics problems. The described phase-field model, coupled with plasticity, provides a feasible technique to analyzing crack initiation and the subsequent crack growth resistance only if the length scale parameter included in the phase-field model is finite and treated as a material parameter which should be properly characterized.
机译:在此贡献中提出了弹塑性固体中脆性断裂的相场连续体理论的公式化及其计算实现。该理论基于虚拟功率公式,其中引入了两个附加且独立的运动学描述符,即相场和累积塑性应变。此外,它通过引入适当的约束条件并仔细注意那些约束条件对与塑性和断裂相关的微观结构变化的动力学的影响,从而包含了相场和塑性应变演化的不可逆性。数值实现采用有限元方法进行空间离散化,并采用带有子步长的分裂方案进行时间积分。为了说明其潜在的效用,\ udwe将模型应用于许多众所周知的线性和非线性断裂力学问题。仅当包含在相场模型中的长度尺度参数是有限的且应视为适当的材料参数时,所描述的相场模型与可塑性一起提供了一种可行的技术来分析裂纹萌生和随后的裂纹扩展阻力表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号